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Spiral wave dynamics under feedback via an equilateral triangular sensory domain
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We perform a numerical study of the trajectories of spiral wave cores in excitable systems whose excitability
is modulated in proportion to the integral of the activity in a sensory domain in the shape of an equilateral
triangle. As a result of this domain shape having vertices opposite sides, unusual forms of lobed limit cycles
occur, which are destroyed and then re-form as the domain size is varied. Some key results are also demon-
strated experimentally using the light-sensitive Belousov-Zhabotinsky reaction. To characterize the observed
behavior, we introduce the concept of express and stagnation zones, which are regions where the trajectory
moves particularly rapidly or slowly. The location and strength of the zones far from the domain are accounted
for by approximating the parts of the spiral wave crossing the domain by a series of plane waves.
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I. INTRODUCTION

Reaction-diffusion equations admitting stable pulse-
shaped traveling wave solutions in one dimension will also
exhibit spiral waves in two dimensions. The classic example
of such equations are those governing excitable systems. In
the spatially homogeneous state, an excitable system has, in
addition to a single stable equilibrium, a transient attractor
(the excited state) and a transient repellor (the threshold).
The peak of a wave in a spatially extended system corre-
sponds to the transient attractor. Excitable systems in nature
in which spiral waves have been observed include the
Belousov-Zhabotinsky (BZ) reaction [1], catalytic oxidation
on surfaces [2], slime mold [3], heart muscle [4], and mam-
malian neocortex [5].

Of particular interest is the motion of the spiral tip as the
spiral wave front propagates. If the parameters of the excit-
able system are held fixed both temporally and spatially, the
tip trajectory is, in general, a cycloid [6]. However, as a
limiting case, depending on the system and the choice of
parameters, it is possible to obtain rigid rotation whereby the
tip trajectory is circular (and is referred to as the spiral core)
and the spiral wave maintains a constant shape. If a system
parameter that affects the excitability is varied periodically in
time, in addition to cycloids, tip trajectories in the form of
“wavy cycloids” and Lissajous figures are obtained [7-9].

The most striking long-term behavior of the tip is seen
when the excitability is modulated via a feedback mecha-
nism. In local feedback, an arbitrary point in the medium is
selected and the excitability of the system is then modulated
according to the state of the system at that measuring point.
It is found that the trajectory of the spiral core center is
attracted to a series of circular limit cycles centered on the
measuring point [7]. If there is a sufficient time delay be-
tween the measurement and the subsequent modulation of
the excitability, the limit cycles become unstable in favor of
attractors of a more complicated nature [10].

The effect of various nonlocal feedback schemes has also
been investigated. In this case, the excitability is modulated
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in response to the average value of the activity over a speci-
fied region of the system (the sensory domain). When the
domain size is significantly smaller than the wavelength of
the spiral wave, the spiral core trajectories are similar to
those for local feedback. However, for larger domains, the
nature of the attractors depends very much on the size and
shape of the domain [11,12]. The change in behavior occur-
ring as a function of domain size has been examined for
circular [13] and square [11,14] domains. In this paper we
present the results of a systematic computational study in the
case of feedback control of rigidly rotating spiral waves us-
ing domains in the shape of an equilateral triangle. Some key
results are also demonstrated experimentally using the light-
sensitive BZ reaction.

The fact that for an equilateral triangular domain each
vertex is opposite a side turns out to be crucial. It results in
significant differences in the shape of the limit cycles and a
more complicated sequence of bifurcations as compared with
those obtained with a square domain. In the final part of the
paper we use a simplified model to account for the locations
of regions outside the domain where the core has an excep-
tionally large or small speed.

II. COMPUTATIONAL AND EXPERIMENTAL DETAILS

The excitable system we study numerically is governed
by the equations

ou v
—=V2u+F(u,v)-1(1), —=eGu,v), (1)
ot ot
where u and v are the concentrations of activator and inhibi-
tor, respectively, and the expressions for F' and €G and the

associated parameter values are those used in Ref. [11]. The
feedback term I(z) is given by

I(t) = Iy + kp(B(2) = By), B(t)=§ J v(x,y,t)dx dy,
D
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where S is the area of the sensory domain D over which the
integration is performed, and By, is the average value of B(¢)
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over one revolution of a spiral wave located at the center of
the domain. We used /,=0 and kg,=0.1 throughout.

The numerical calculation was carried out using an
adapted version of Barkley’s program EZSPIRAL [15]. The
code integrates (1) using the explicit Euler method with a
nine-point Laplacian and no-flux boundary conditions, and
also determines the location of the spiral tip. A time step of
0.05 and a space step of 0.5 were used throughout. A rigidly
rotating spiral of pitch 70 space units that rotates about a
core of radius 7 units is obtained by using the sector-shaped
initial conditions specified in Ref. [16]. The discrepancy be-
tween our value of the pitch and that given in Refs. [11,17]
of 64 in spite of our using identical parameter values is due
to our using a larger time step and the nine-point rather than
the five-point Laplacian. With time steps of less than 0.2 and
0.05, the nine- and five-point calculations give pitches of 66
and 64, respectively. After normalizing the length to units of
wavelength the plots obtained from using the larger and
smaller time steps were found to be essentially the same.

To aid interpretation of the numerical and experimental
results, we also plot the drift vector field which depicts the
drift velocity of the spiral core [11]. Following the method
given in Ref. [11], the relative magnitude of the velocity is
given by the magnitude of the first Fourier component of
B(7). The direction of the velocity is equal to ¢+ ¢, where ¢
is the phase of the first Fourier component and ¢, is a con-
stant. We determine ¢, by comparing the drift vector field
with the path of the spiral core. In Ref. [11] the B(r) needed
for the drift vector plot was found by approximating the
wave front as a thin Archimedean spiral. Instead, we use a
fully formed spiral wave from the numerical solution of (1)
without feedback. To exploit the threefold rotational symme-
try about the triangle centroid, the drift vectors are evaluated
on a triangular grid centered on this point for values of the
polar angle in the range 0< #<<120° only.

The drift vector fields we obtain for larger domain sizes
are quite complex. Visualization of the flows and attractors is
greatly enhanced by using the color of the arrows and back-
ground to indicate the sign of the divergence since attractors
and repellors will occur in regions of negative and positive
divergence, respectively. We use an inverse-magnitude
scaled divergence obtained by dividing the divergence by the
mean magnitude of the six vectors used to calculate the di-
vergence. Coloring the background according to this scaled
divergence makes regions where the magnitude of the vec-
tors is low particularly striking.

The experimental observations were carried out using
a photosensitive BZ reaction with a similar setup to
previous studies [18,19]. The light-sensitive
tris(2,2’-bipyridyl)ruthenium (II) catalyst, which gives rise
to a decrease in the excitability of the system with increasing
illumination, was present, immobilized at a concentration of
4.2 mM in a 0.33+0.02 mm silica gel layer at the base of a
7-cm-diameter Petri dish. Two BZ solutions were prepared
comprising NaBrOs (0.4, 0.17), H,SO, (0.78, 1.56), malonic
acid (0.336, 0.168), and NaBr (0.4, 0.2) where the respective
molar concentrations are given in parentheses. After comple-
tion of the malonic acid bromination, 2 ml of the first solu-
tion was poured onto the gel from one side of the dish, fol-
lowed by 8 ml of the second solution two minutes later. The
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reactants were uniformly illuminated from below using light
from a Panasonic PT-L555E video projector controlled by a
computer. Before reaching the dish, the light passes through
a KG4 cool glass filter to eliminate radiant heat, a
310-530 nm BG6 filter, a ground glass plate to improve
homogeneity, and a lens to collimate the beam. The light
intensity used in the absence of feedback, I,, was typically
1.0 W m~2. Its value is chosen to ensure rigid rotation of the
spiral waves, and was measured using a Tektronix J 1812
photometer put in place of the Petri dish. The experiments
were conducted at an ambient temperature of 22+1 °C and
typically lasted 2—2.5 h, after which time the rigid rotation
was lost due to depletion of the reactants.

To apply feedback to the system, the reaction is imaged
every second using a Hamamatsu H 3077 charge-coupled
device camera whose output is fed to a frame grabber card
(DT 3155) for digitization. To facilitate the image process-
ing, the contrast between wave front and background is en-
hanced by placing a 490+ 13 nm filter in front of the camera.
From the digitized image, a program computes the desired
intensity level I(r) according to (2) with v replaced by the
image brightness. The feedback gain kg, held fixed for each
experiment, is chosen to have a value of approximately
0.12 W m~2/max(|B(1)-By|). A signal is then sent to the
frame grabber to update the projector intensity before the
next image is taken.

Semicircular waves originate from the side of the dish
where the first BZ solution is added. To generate a spiral
wave, when the first wave front reaches the center (which
occurs after the second solution has been added) half of it is
removed by illumination with a high-intensity spot of light
from a cold source (Schott, KL 1500). The remaining open-
ended wave front evolves into a spiral wave near the center
of the dish. The spiral is allowed to fully form before feed-
back is applied. An unperturbed spiral wave prepared in this
way has an initial wavelength of between 2.1 and 3.0 mm
and a period of 52—-60 s. The spiral wavelength was moni-
tored continually. In some cases it was found to increase and
the tip trajectory from that point on was discarded.

III. COMPUTATIONAL AND EXPERIMENTAL RESULTS

Both the computational and experimental studies were
carried out with clockwise spiral waves (which appear to
rotate counterclockwise as the wave front propagates). The
plots for counterclockwise spiral waves would be a mirror
image of the ones presented here. From now on, all lengths
are given in units of the spiral wavelength N\. The domain
size d is defined as the length of a side of the triangle.

The behavior of the system is best characterized by con-
sidering the spiral core drift velocity vector field. The com-
putational studies show that for d less than about 2, the cen-
troid of the domain is a source. For d of around 1 or less, the
source is surrounded by concentric, approximately circular,
alternately stable and unstable limit cycles as is apparent
from the drift vector plot of Fig. 1(a). From the vector plots
in Figs. 1 and 2 it can be seen that, as d is increased, the
innermost limit cycle decreases in size and becomes more
triangular in shape. In all instances, the stable limit cycles
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FIG. 1. Drift vector plots. In this and subsequent plots of this type, the black triangle is the domain, the white curves are the spiral tip
paths, and the arrows indicate the drift velocity. The length of all but the small, narrow-headed arrows is proportional to the drift speed
(although the proportionality constant differs for each plot). Black (white) arrows are in regions where the field divergence is positive
(negative). The background is shaded according to the inverse-magnitude scaled divergence. Regions of negative (positive) divergence have
a dark (light) background. d=(a) 1 and (b) 1.5. In (a) and (b) the tip trajectory starts near the central unstable focus and ends up on the
innermost stable limit cycle. (c) d=1.7—tip trajectories are shown following the first two stable limit cycles.

flow counterclockwise, while the unstable limit cycles are in
the opposite sense.

By around d=1.5, it is clear that there are regions where
the spiral core speed is large and those where it is small, in
addition to those near the single fixed point at the centroid.
We refer to these as express and stagnation zones, respec-
tively. Like the sinks and sources, the stagnation zones ap-
pear as the regions with the darkest or brightest background
depending, respectively, on whether the divergence is nega-
tive or positive. Notice in Fig. 1(b) that the innermost limit
cycle passes through three stagnation zones. It will be con-
venient to classify the express zones outside the domain ac-
cording to the direction from the centroid in which they lie.
Vertex express zones (VEZs) lie in the directions of the do-
main vertices, namely, #=-30°, 90°, —150°, whereas lateral
express zones (LEZs) are located in the opposing directions
away from the centroid. Just outside the domain is an ap-
proximately hexagonal unstable limit cycle lying within six
repelling express zones (three LEZs and three VEZs) inter-
spersed with six stagnation zones. Further out there is a
stable limit cycle of similar shape lying within six attracting
express zones. As d increases further, the distance from the
centroid to the VEZs decreases, while the corresponding dis-
tance to the LEZs increases. This results in the second stable
limit cycle having three protruding lobes as can be seen in
Fig. 1(c). We will refer to such lobed limit cycles as being of
lateral or vertex type depending on whether the most pro-
truding parts (the “lobes”) are composed of LEZs or VEZs,
respectively.

As a result of the increase in separation of the ends of the
LEZs from the ends of the VEZs, the limit cycles become
ever more distorted until by the time the domain size has
reached d=1.8 the innermost unstable limit cycle has been
destroyed via saddle-node bifurcations. The destruction of
the lobed stable limit cycle surrounding it follows at just
below d=1.82. With the two limit cycles destroyed, the basin
of attraction for the central stable limit cycle becomes much
larger—trajectories starting on and around the express zones
that contained part of the destroyed lobed limit cycle will

eventually make their way to it via a number of (negative
divergence) stagnation zones. However, this extended basin
is short lived. By d=1.85, a homoclinic bifurcation has oc-
curred which results in the innermost LEZs no longer con-
necting with the central limit cycle but instead linking with
the next attracting VEZs to form a vertex lobed stable limit
cycle, as can be seen in Fig. 2. A further (lateral) lobed stable
limit cycle passes through the second set of attracting VEZs.
Trajectories starting on the attracting VEZs in between the
second and third stable limit cycles will end in a sink. These
sinks occur for only a small range of d. At d=1.86 this sec-
ond set of VEZs is part of the basin of attraction for the third
limit cycle, and by d=1.90, these VEZs make up part of the
third stable limit cycle which is now vertex lobed.

—3 -2 0 1 2

FIG. 2. Drift velocity plot for d=1.85. Tip trajectories follow
(parts of) the first three stable limit cycles. The second and third are
examples of vertex and lateral lobed limit cycles, respectively. The
isolated circle marks the position of a stable focus.
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FIG. 3. Dirift velocity plot for d=2.70. Selected fixed points
referred to in the text are inside white circles.

The central stable limit cycle shrinks down to a stable
focus (via a supercritical Hopf bifurcation) for d=2. The
parts of the innermost vertex lobed limit cycle get ever closer
to the centroid as d increases. They are separated from the
stable focus there by saddle nodes. At around d=2.6 the limit
cycle is destroyed as a result of a homoclinic bifurcation and
trajectories starting on the first VEZs end up at the centroid.
As before, the extended basin of attraction for the central
attractor only occurs for a narrow range of domain size. By
d=2.7, trajectories starting on the first VEZ instead end up
on a sink in the neighboring stagnation zone. Now that there
are no longer any limit cycles in the domain, it is of interest
to survey the fixed points present. Referring to the region 0
< #<<120° in Fig. 3, as well as the sinks at the centroid and
the stagnation zone, there is an unstable node at (—0.07, 0.67)
and a saddle node at (0.23, 0.27). These originated when the
first unstable limit cycle broke around d=1.82. There is also
a stable focus just inside the domain at (0.62, 0.41) and fur-
ther out a saddle node at (0.96, 0.64). This pair of fixed
points was created in a bifurcation inside a stagnation zone at
around d=2.57. This lattice of evenly separated sources and
sinks is reminiscent of the cellular structure seen for the
square domain [11,12]. As in that case, more fixed points
appear inside the domain as the domain size is increased still
further.

The most important types of behavior seen in the compu-
tational study are confirmed by the results of our experiments
with the light-sensitive BZ reaction. The increasingly trian-
gular shape of the innermost limit cycle as it shrinks down to
become a stable focus as d increases can be seen in the
results shown in Figs. 4(a)-4(d). Figure 4(e) shows the spiral
core first drifting clockwise as a result of starting close to an
unstable limit cycle, and then reversing its sense as it ap-
proaches a stable limit cycle. Part of a lateral lobed limit
cycle is clearly seen in Fig. 4(f). Notice the presence of the
stagnation zone (where the loops are bunched together) at the
start of the lobe.

FIG. 4. Experimental results for various (d,kg): (a) (1.0, 0.6);
(b) (1.3, 0.6); (c) (2.3, 1.0); (d) (2.5, 0.9); (e) (1.8, 0.6); (f) (1.8,
1.4). The spiral wave image is taken at the start of the tip trajectory.
Feedback is initiated after a few revolutions of the tip.

IV. PLANE WAVE APPROXIMATION

We now turn our attention to the motion of the core when
it is far from the domain. To explain features of the drift
vector fields, we would ideally require an analytical expres-
sion for the drift velocity at each point. Two approaches have
been suggested for obtaining this after assuming that the
wave front takes the form of an Archimedean spiral [20]. The
more direct method is to calculate B(r) by finding the total
length of the sections of an Archimedean spiral that lie inside
the domain. Alternatively, the drift velocity at a point can be
obtained by summing the drift vectors induced by each point
inside the domain. For a triangular domain, such expressions
cannot be written in closed form. However, since the curva-
ture of a spiral wave decreases with increasing distance from
the core, for sufficiently large core-domain distances we can
treat the parts of the spiral wave inside the domain as a
unit-wavelength plane wave train propagating away from the
spiral core in the direction of the domain as illustrated in Fig.
5(a). As the tip rotates about the core once in time 7, the
plane wave fronts move forward one unit at uniform speed.
In this plane wave approximation (PWA), we have B(r)
=L(p)/S where L(p) is the sum of the lengths of the lines
inside the domain and p is the distance from O to the nearest
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FIG. 5. Plane wave approximation. (a) Construction used to find
L(p). The spiral core is in the direction of the dashed line. Solid
lines perpendicular to the dashed line are wave fronts. In (b) the
small circle represents the spiral core and the arrow the current
direction of motion of the tip.

plane wave in the direction of the spiral core. It therefore lies
in the range 0<p<1, and if time is scaled so that 7=1, p
=(1-t+t5) mod 1 where 7, is a time at which a plane wave
passes through O. We only need to consider the cases 30°
< #=<90° since, in addition to the threefold rotational sym-
metry, there is also reflection symmetry about the line 6
=30°. For 30° <#<90° a wave front passing inside the
domain either intersects OB and OA or OB and AB. The
number of wave fronts that intersect OB and OA is the num-
ber M of wave fronts that lie between O and C, where point
C lies on the dashed line in such a position that AC is per-
pendicular to OC. Then M=[d cos 8—p+ 1] where [-] repre-
sents the integer part. The remaining wave fronts that pass
through the domain, and intersect OB and AB, lie between C
and D. Point D lies on the dashed line in such a position that
BD is perpendicular to OD. If N is the number of wave
fronts between C and D then M+N=[d cos(60°-6)—p+1].
To find L(p) we need to introduce a further point E which is
the intersection of the dashed line with the line that passes
through A and B. Then using simple geometry we obtain

M-1
L(p) = >, (p+m){tan 6+ tan(60" — 6)}
m=0

M+N-1

+ > (p+m)tan(60 - 6)
=M

+{O0E - (p + m)}tan(120" - 6)
where the length OF is given by
OE = d{cos 0+ sin ftan(6—30")}.

It is apparent that, when d= 2/43 and the plane wave
fronts are parallel to one of the sides, B(z) will take the form
of a period-T sawtooth wave composed of one or two linear
sections. The gradient of B(f) will be positive or negative
depending on whether the wave fronts enter at a vertex
(# mod 120°=90°) or side (# mod 120°=30°) respectively.
The sawtooth discontinuity corresponds to the wave front
crossing one of the sides. Referring to Fig. 5(b) in which 6
=30° and the spiral core is a half integer number of wave-
lengths from the side of the triangle, as the spiral wave (ap-
proximated by a plane wave) crosses the side of the triangle,
there will be a sudden increase in the excitability resulting in
a boost to the motion of the tip and hence also the core in the
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direction shown. Now consider moving the spiral core a little
further away from the domain. In order for the wave front to
touch the side, the spiral must be rotated counterclockwise.
Thus as the spiral core moves away from the domain, the
drift velocity vectors rotate counterclockwise, completing
one rotation every wavelength. The spiral core shown is
therefore in the center of an attracting region. It is evident
that the greatest difference between the maximum and mini-
mum values of B(r) will occur when the plane waves are
aligned with a side. The magnitude of the first Fourier com-
ponent and hence the drift velocity will be the largest in
these cases. From the above it is now apparent that the spiral
core in Fig. 5(b) is at the center of an attracting LEZ and that
in general these are located at distances from the centroid of
m+%+d/ \fﬁ, where m is an integer.

The difference in drift directions between two points is
given by the difference in phase between the first Fourier
components of B(z). The phase of this component is approxi-
mately /2 behind (ahead of) the discontinuity of the nega-
tive (positive) gradient sawtooth wave described earlier. The
net phase difference of 7 between the two cases results in the
centers of attracting VEZs occurring at integer, rather than
half-integer, distances from the side and hence their distance
from the centroid is given by m—d/\12. These expressions
explain why LEZs move away from the centroid while VEZs
move toward it with increasing d. One also sees that since
the switching between vertex and lateral lobed limit cycles
described earlier for the region near the domain for 1.8 <d
< 1.9 results from the opposing directions of motion of the
VEZs and LEZs, this switching phenomenon is generic for
this system and will occur for domain sizes and distances
from the centroid larger than this.

In Fig. 6 the PWA estimates for the positions of the ex-
press zones are compared with the measured values from the
numerical calculation. As expected, the agreement is best far
from the domain. Also, for a given distance the discrepancy
is larger for LEZs than VEZs. This is because how well the
plane wave approximates the spiral wave depends on the
distance of the core to the side which will evidently be
smaller for a LEZ than a VEZ for a given core-centroid
distance.

The PWA can also be used to explain some features of the
magnitudes of the drift vectors in the directions of the side
midpoints and vertices. First, if the spiral core in the center
of a VEZ or LEZ is moved directly away from the centroid,
according to the PWA it will only result in a phase change in
B(z). Hence the magnitude of the drift vector in these direc-
tions should be constant. Note that this prediction is also true
for the Archimedean spiral approximation. For the real spi-
ral, it would not be expected to be constant due to the tip not
remaining in the same place as the wave rotates. Second, the
difference between the maximum and minimum total length
of the plane wave fronts in the domain is d. Since the area of
the domain is proportional to d?, B(f) and hence the drift
velocity should be inversely proportional to d. As shown in
Fig. 7, the measured range of drift vector amplitude A within
an express zone is generally small. It is to be expected that
this amplitude should be the same for VEZs and LEZs al-
though this only appears to be the case near d=2. The am-
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FIG. 6. Distances of centers of attracting express zones in the
directions of (a) the vertices and (b) the midpoints of the sides.
Solid lines, from computational results; dashed line, from PWA.
The dotted lines show the edge of the domain.

plitudes certainly decrease with increasing d, but only ap-
proximately satisfy the inverse relationship obtained from
the PWA.

We can also use the PWA to account for the occurrence,
strength and positioning of the stagnation zones. When the
plane waves are perpendicular to one of the sides, as is de-
picted in Fig. 5(a), the change in B(¢) and therefore magni-
tude of the drift velocity is minimized. If stagnation zones
are present far from the domain, we therefore expect that
they lie in the directions #=nm/3 away from the centroid.
For plane waves traversing the domain in this way, it is eas-
ily seen that B(z) will be constant (and hence the drift veloc-
ity zero) if there are always an even number of wave fronts
in the domain, since for each wave front whose length inside
the domain is increasing, there will be a corresponding one
whose length is decreasing by the same amount. As a result,
according to the PWA it would be expected that the stagna-
tion zones far from the domain should be strongest when d is
close to an even integer. On the other hand, if there are
always an odd number of wave fronts in the domain, B(z)
will vary with the result that the drift speed will not be very
small. Hence for d close to an odd integer we expect very
weak stagnation zones. This is seen for d=3 in Fig. 8(a) in
contrast to the very pronounced stagnation zones when d is
close to an even integer as in Fig. 2 and Fig. 8(b). When 6
=n1r/3, the PWA is at its crudest, and so the stagnation zones
are only approximately in these directions.

Finally, it is worth noting that in the more extensive plots,
far from the domain there is an additional symmetry about

IR Pt .
0.0 02 0.4 0.6
1/d

FIG. 7. (1/d,A) plot of maximum and minimum drift vector
amplitudes lying in the directions #=30° (open circles) and 90°
(filled circles) for the express zones at a distance of about 6 from
the centroid. The dotted line passes through the value with the
smallest range of amplitudes.
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the directions nar/3+7r/6. This is indicating that the lateral
asymmetry of the spiral wave is no longer of importance at
these distances.

V. DISCUSSION

In the analysis of spiral wave dynamics under feedback
control via an equilateral triangular domain, we have seen
two basic types of behavior. First, trajectories beyond some
critical distance from the centroid (this distance increasing
with domain size) generally will be attracted to stable limit
cycles. In contrast to the results from circular and square
domains, both experimental measurements and computa-
tional calculations show that these will in general be lobed if
the domain is sufficiently large. The plane wave approxima-
tion tells us that these lobed limit cycles will occur at arbi-
trarily large distances from the centroid and that as the do-
main size is increased, each limit cycle will only last for a
limited range of d before being destroyed. Parts of the at-
tracting regions making up such a destroyed limit cycle some
distance from the domain will later join up to form a new
limit cycle. Second, inside the domain, in particular for
larger domain sizes, we see a regular array of stable and
unstable fixed points.

The existence of express zones and stagnation zones is
apparent in the experimental and numerical results of earlier
studies, although only in a recent article on two-point feed-
back have regions of particularly low spiral-core drift veloc-
ity been commented upon [21]. In this case, infinitely long
fixed lines emanating from the sensory region are embedded
in stagnation zones. The zones are very extensive for some
parameter values. The fixed lines (along which the drift ve-
locity is exactly zero) resemble the lines of narrow stagna-
tion zones we have found in the cases when d is close to an
even integer.

In the control of a spiral wave both types of zone are of
great importance. If a spiral tip is to be moved from one
region to another, like stable fixed points, stagnation regions
are to be avoided. Conversely, rapid movement of the spiral
core could be achieved by choosing a path composed of ex-
press zones.

The stagnation zones we have reported here are not
unique to feedback via triangular domains. Using the PWA it

FIG. 8. Inverse-magnitude scaled divergence plots for d=(a) 3.0
and (b) 4.0.
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can be seen that they would be expected to occur, for in-
stance, aligned with the vertices of a square domain and be
the most prominent when d=42n. From Fig. 2(d) in Ref.
[12] it is apparent that they do. It is also straightforward to
understand why the very extended stagnation zone occurs in
the case of the rhombus shaped sensory domain in their Fig.
1(g).

The calculations and experiments were performed for rig-
idly rotating spiral waves. For meandering spirals, there is a
significant deviation from an Archimedean form near to the
spiral core. However, this is no longer the case several wave-
lengths away from the core. After averaging over the mean-
dering motion, it is to be expected that the corresponding
results for meandering spirals would be qualitatively similar,
as has been shown to be the case in both experimental stud-
ies and theoretical predictions using the spiral wave approxi-
mation for feedback systems using other domain shapes [20].

The PWA approach introduced here was presented

PHYSICAL REVIEW E 74, 066209 (2006)

with the caveat of only applying far from the domain. Nev-
ertheless, it is of note that some of its predictions for the drift
vector field, such as the location of the express zone centers,
are also reasonably accurate quite near the domain. We used
the PWA for the directions #=nm/6 since they turn out to
correspond to the centers of express or stagnation zones and
the expressions for B(¢) in these cases are the most straight-
forward to analyze. Applying our PWA techniques and their
extension through examining the case for other angles
to explain features of drift vector fields for this and other
domain geometries is an interesting topic for future
investigation.
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